45,495 research outputs found

    Sieve-based confidence intervals and bands for L\'{e}vy densities

    Full text link
    The estimation of the L\'{e}vy density, the infinite-dimensional parameter controlling the jump dynamics of a L\'{e}vy process, is considered here under a discrete-sampling scheme. In this setting, the jumps are latent variables, the statistical properties of which can be assessed when the frequency and time horizon of observations increase to infinity at suitable rates. Nonparametric estimators for the L\'{e}vy density based on Grenander's method of sieves was proposed in Figueroa-L\'{o}pez [IMS Lecture Notes 57 (2009) 117--146]. In this paper, central limit theorems for these sieve estimators, both pointwise and uniform on an interval away from the origin, are obtained, leading to pointwise confidence intervals and bands for the L\'{e}vy density. In the pointwise case, our estimators converge to the L\'{e}vy density at a rate that is arbitrarily close to the rate of the minimax risk of estimation on smooth L\'{e}vy densities. In the case of uniform bands and discrete regular sampling, our results are consistent with the case of density estimation, achieving a rate of order arbitrarily close to log1/2(n)n1/3\log^{-1/2}(n)\cdot n^{-1/3}, where nn is the number of observations. The convergence rates are valid, provided that ss is smooth enough and that the time horizon TnT_n and the dimension of the sieve are appropriately chosen in terms of nn.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ286 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    One-dimensional relativistic dissipative system with constant force and its quantization

    Full text link
    For a relativistic particle under a constant force and a linear velocity dissipation force, a constant of motion is found. Problems are shown for getting the Hamiltoninan of this system. Thus, the quantization of this system is carried out through the constant of motion and using the quantization of the velocity variable. The dissipative relativistic quantum bouncer is outlined within this quantization approach.Comment: 11 pages, no figure

    Combined creep and plastic analysis with numerical methods

    Get PDF
    The combination of plastic and creep analysis formulation are developed in this paper. The boundary element method and the finite element method are applied in plates in order to do the numerical analysis. This new approach is developed to combine the constitutive equation for time hardening creep and the constitutive equation for plasticity, which is based on the von Mises criterion and the Prandtl-Reuss flow. The implementation of creep strain in the formulation is achieved through domain integrals. The creep phenomenon takes place in the domain which is discretized into quadratic quadrilateral continuous and discontinuous cells. The creep analysis is applied to metals with a power law creep for the secondary creep stage. Results obtained for three models studied are compared to those published in the literature. The obtained results are in good agreement and evinced that the Boundary Element Method could be a suitable tool to deal with combined nonlinear problems
    corecore